已知定义域为的函数是奇函数。(1)求的值;(2)判断函数的单调性;(3)若对任意的,不等式恒成立,求的取值范围.
设命题:直线有两个公共点,命题:方程表示双曲线,若且为真,求实数的取值范围.
已知是圆上满足条件的两个点,其中是坐标原点,分别过作轴的垂线段,交椭圆于点,动点满足(I)求动点的轨迹方程.(II)设分别表示和的面积,当点在轴的上方,点在轴的下方时,求 的最大面积.
如图,正方形所在平面与圆所在平面相交于,线段为圆的弦,垂直于圆所在平面,垂足是圆上异于的点,,圆的直径为, 1)求证:平面平面2)求二面角的平面角的正切值.
若抛物线的焦点与椭圆的上焦点重合,1)求抛物线方程.2)若是过抛物线焦点的动弦,直线是抛物线两条分别切于的切线,求的交点的纵坐标.
如图,四棱锥中,底面是矩形,,点是的中点,点在边上移动。1)点为的中点时,试判断与平面的位置关系,并说明理由。2)证明:无论点在边的何处,都有3)当等于何值时,与平面所成角的大小为.