已知等差数列的公差不为0,其前项和为,等比数列的前项和为,公比为,且,求的值
(本小题满分14分)已知定义在正实数集上的函数f(x)=+ax,g(x)=4a2lnx+b,其中a>0,设两曲线y=f(x)与y=g(x)有公共点,且在公共点处的切线相同. (1)若a=1,求两曲线y=f(x)与y=g(x)在公共点处的切线方程; (2)用a表示b,并求b的最大值.
(本小题满分13分)如图,点M()在椭圆(a>b>0)上,且点M到两焦点的距离之和为4. (1)求椭圆方程; (2)设与MO(O为坐标原点)垂直的直线交椭圆于A、B(A、B不重合),求的取值范围.
(本小题满分12分)已知数列{an}满足an=2an-1+2n+1(n∈N,n>1),a3=27,数列{bn}满足bn=(an+t). (1)若数列{bn}为等差数列,求bn; (2)在(1)的条件下,求数列{an}的前n项和Sn.
(本小题满分12分)甲、乙两家药厂生产同一型号药品,在某次质量检测中,两厂各有5份样品送检,检测的平均得分相等(检测满分为100分,得分高低反映该样品综合质量的高低).成绩统计用茎叶图表示如下: (1)求a; (2)某医院计划采购一批该型号药品,从质量的稳定性角度考虑,你认为采购哪个药厂的产品比较合适? (3)检测单位从甲厂送检的样品中任取两份作进一步分析,在抽取的两份样品中,求至少有一份得分在(90,100]之间的概率.
(本小题满分12分)已知锐角△ABC中的三个内角分别为A,B,C. (1)设,求证△ABC是等腰三角形; (2)设向量s=(2sinC,-),t=(cos2C,2-1),且s∥t,若sinA=,求sin(-B)的值.