已知数列的各项均为正数,是数列的前n项和,且.(1)求数列的通项公式;(2)的值.
已知函数. (1)求函数的最小正周期、最大值及取最大值时自变量的取值集合; (2)在△ABC中,角A,B,C的对边分别是a,b,c;若a,b,c成等比数列,且,求的值.
设函数. (1)若时,解不等式; (2)若函数有最小值,求a的取值范围.
在直角坐标系中,以原点为极点,x轴的正半轴为极轴建立极坐标系,已知曲线C:,过点P(-2,-4)的直线的参数方程为(t为参数)与C分别交于M,N. (1)写出C的平面直角坐标系方程和的普通方程; (2)若,,成等比数列,求a 的值.
已知PQ与圆O相切于点A,直线PBC交圆于B、C两点,D是圆上一点,且AB∥CD,DC的延长线交PQ于点Q. (1)求证: (2)若AQ=2AP,,BP=2,求QD.
已知函数在点处的切线与x轴平行. (1)求实数a的值及的极值; (2)是否存在区间,使函数在此区间上存在极值和零点?若存在,求实数t的取值范围,若不存在,请说明理由; (3)如果对任意的,有,求实数k的取值范围.