如图所示,已知以点A(-1,2)为圆心的圆与直线l1:x+2y+7=0相切,过点B(-2,0)的动直线l与圆A相交于M,N两点,Q是MN的中点,直线l与l1相交于点P.(1)求圆A的方程;(2)当=2时,求直线l的方程;(3)·是否为定值?如果是,求出其定值;如果不是,请说明理由.
已知椭圆()的两个焦点分别为,点P在椭圆上,且满足,,直线与圆相切,与椭圆相交于A,B两点.(Ⅰ)求椭圆的方程;(Ⅱ)证明为定值(O为坐标原点)
如图,在长方体中,,且.(Ⅰ)求证:对任意,总有;(Ⅱ)若,求二面角的余弦值;(Ⅲ)是否存在,使得在平面上的射影平分?若存在,求出的值,若不存在,说明理由.
已知,若能表示成一个奇函数和一个偶函数的和.(Ⅰ)求和的解析式;(Ⅱ)若和在区间上都是减函数,求的取值范围.
在△ABC中, a,b,c分别为角A,B,C的对边,已知,△ABC的面积为,又.(Ⅰ)求角C的大小; (Ⅱ)求a+b的值.
已知函数在区间上单调递减,在区间上单调递增.(Ⅰ)求实数的值;(Ⅱ)若关于的方程有三个不同实数解,求实数的取值范围;(Ⅲ)若函数的图象与坐标轴无交点,求实数的取值范围.