已知命题“存在”,命题:“曲线表示焦点在轴上的椭圆”,命题“曲线表示双曲线”.(1)若“且”是真命题,求的取值范围;(2)若是的必要不充分条件,求的取值范围.
已知中,角的对边分别为,且满足. (I)求角的大小; (Ⅱ)设,求的最小值.
定义域为的奇函数满足,且当时,. (Ⅰ)求在上的解析式; (Ⅱ)若存在,满足,求实数的取值范围.
已知向量与,其中 (Ⅰ)若,求和的值; (Ⅱ)若,求的值域.
设函数的定义域为集合,函数的定义域为集合,已知:;:满足,且若则为真命题,求实数的取值范围.
已知函数,(为常数) (1)当时恒成立,求实数的取值范围; (2)若函数有对称中心为A(1,0),求证:函数的切线在切点处穿过图象的充要条件是恰为函数在点A处的切线.(直线穿过曲线是指:直线与曲线有交点,且在交点左右附近曲线在直线异侧)