在平面直角坐标系xOy中,△ABC的顶点B、C的坐标为B(-2,0),C(2,0),直线AB,AC的斜率乘积为,设顶点A的轨迹为曲线E.(1)求曲线E的方程;(2)设曲线E与y轴负半轴的交点为D,过点D作两条互相垂直的直线l1,l2,这两条直线与曲线E的另一个交点分别为M,N.设l1的斜率为k(k≠0),△DMN的面积为S,试求的取值范围.
已知函数(I)若,求sin2x的值;(II)求函数的最大值与单调递增区间.
已知等差数列的公差,它的前n项和为,若且成等比数列.(I)求数列的通项公式;(II)设数列的前n项和为Tn,求Tn.
(本小题满分12分)设函数的图象上两点P1(x1,y1)、P2(x2,y2),若,且点P的横坐标为. (1),求证:P点的纵坐标为定值,并求出这个定值; (2),求 (3),记Tn为数列的前n项和,若对一切n∈N*都成立,试求a的取值范围。
(本小题满分10分)求过点P(2,2)且与曲线y=x2相切的直线方程.
已知数列的前项和满足.(1)写出数列的前三项;(2)求数列的通项公式;(3)证明:对任意的整数,有.