已知:如图△ABC中,∠ACB=90°,点E是边BC上一点,过点E作FE⊥BC(垂足为E)交AB于点F,且EF=AF,以点E为圆心,EC长为半径作⊙E,交BC于点D.(1)求证:直线AB是⊙E的切线;(2)设直线AB和⊙E的公共点为G,AC=8,EF=5,连接EG,求⊙E的半径r.
端午节期间,甲、乙两人沿同一路线行驶,各自开车同时去离家560千米的景区游玩,甲先以每小时60千米的速度匀速行驶1小时,再以每小时 m 千米的速度匀速行驶,途中休息了一段时间后,仍按照每小时 m 千米的速度匀速行驶,两人同时到达目的地,图中折线、线段分别表示甲、乙两人所走的路程 y 甲 km , y 乙 km 与时间 x ( h ) 之间的函数关系的图象.请根据图象提供的信息,解决下列问题:
(1)图中 E 点的坐标是 ,题中 m = km / h ,甲在途中休息 h ;
(2)求线段 CD 的解析式,并写出自变量 x 的取值范围;
(3)两人第二次相遇后,又经过多长时间两人相距 20 km ?
如图, AB 是 ⊙ O 的直径, AC 为弦, ∠ BA 的平分线交 ⊙ O 于点 D ,过点 D 的切线交 AC 的延长线于点 E .
求证:(1) DE ⊥ AE ;
(2) AE + CE = AB .
已知关于 x 的一元二次方程 x 2 − 5 x + 2 m = 0 有实数根.
(1)求 m 的取值范围;
(2)当 m = 5 2 时,方程的两根分别是矩形的长和宽,求该矩形外接圆的直径.
如图,在 Rt Δ ABC 中, ∠ C = 90 ° , AC = 3 , BC = 4 , D 、 E 分别是斜边 AB 、直角边 BC 上的点,把 ΔABC 沿着直线 DE 折叠.
(1)如图1,当折叠后点 B 和点 A 重合时,用直尺和圆规作出直线 DE ;(不写作法和证明,保留作图痕迹)
(2)如图2,当折叠后点 B 落在 AC 边上点 P 处,且四边形 PEBD 是菱形时,求折痕 DE 的长.
某校举办“打造平安校园”活动,随机抽取了部分学生进行校园安全知识测试.将这些学生的测试结果分为四个等级: A 级:优秀; B 级:良好; C 级:及格; D 级:不及格,并将测试结果绘制成如下统计图.请你根据图中信息,解答下列问题:
(1)本次参加校园安全知识测试的学生有多少人?
(2)计算 B 级所在扇形圆心角的度数,并补全折线统计图;
(3)若该校有学生1000名,请根据测试结果,估计该校达到及格和及格以上的学生共有多少人?