已知等差数列{an}中,首项a1=1,公差d为整数,且满足a1+3<a3,a2+5>a4,数列{bn}满足bn=,其前n项和为Sn.(1)求数列{an}的通项公式;(2)若S2为S1,Sm (m∈N*)的等比中项,求正整数m的值.(3)对任意正整数k,将等差数列{an}中落入区间(2k,22k)内项的个数记为ck,求数列{cn}的前n项和Tn
(本小题满分12分)养路处建造圆锥形仓库用于贮藏食盐(供融化高速公路上的积雪之用).已建仓库的底面直径为12m,高4m.养路处拟建一个更大的圆锥形仓库,以存放更多食盐,现有两种方案:一是新建的仓库的底面直径比原来大4m(高不变);二是高度增加4m(底面直径不变). (1)分别计算按这两种方案所建的仓库的体积; (2)分别计算按这两种方案所建的仓库的表面积(底面面积不计); (3)哪个方案更经济些?
(本小题满分12分)如图,在直三棱柱中,、分别是、的中点,点在上,。 求证:(1)EF∥平面ABC; (2)平面平面.
(本小题满分10分)已知直线的斜率为,且和坐标轴围成面积为3的三角形,求直线的方程。
如图,已知C点在圆O直径BE的延长线上,CA切圆O于A点,∠ACB的平分线分别交AE、AB于点F、D. (Ⅰ)求∠ADF的度数; (Ⅱ)若AB=AC,求的值.
已知,设命题函数在R上单调递减,不等式的解集为R,若和中有且只有一个命题为真命题,求的取值范围.