上海某学校要从艺术节活动中所产生的4名书法比赛一等奖的同学和2名绘画比赛一等奖的同学中选出2名志愿者,参加即将在上海举行的世博会的志愿服务工作.(1)求选出的两名志愿者都是获得书法比赛一等奖的同学的概率;(2)求选出的两名志愿者中一名是获得书法比赛一等奖,另一名是获得绘画比赛一等奖的同学的概率.
(本小题满分10分)已知向量. (1)若求的值; (2)设,求的取值范围.
已知椭圆(a>b>0)的离心率e=,连接椭圆的四个顶点得到的菱形的面积为4. (Ⅰ)求椭圆的方程; (Ⅱ)设直线l与椭圆相交于不同的两点A、B,已知点A的坐标为 (i)若,求直线l的倾斜角; (ii)若点Q在线段AB的垂直平分线上,且.求的值.
四棱柱ABCD—A1B1C1D1的三视图和直观图如下 (1)求出该四棱柱的表面积; (2)设E是DC上一点,试确定E的位置,使D1E∥平面A1BD,并说明理由.
在直角坐标系xOy中,直线l的参数方程为(t为参数).在极坐标系(与直角坐标系xOy取相同的长度单位,且以原点O为极点,以x轴正半轴为极轴)中,圆C的方程为 (1)求圆C的直角坐标方程; (2)设圆C与直线l交于点A,B.若点P的坐标为(3, ),求|PA|+|PB|的值.
给定两个命题,:对任意实数都有恒成立;:关于的方程有实数根;如果与中有且仅有一个为真命题,求实数的取值范围.