已知的值域为集合,的定义域为集合,其中。(1)当,求;(2)设全集为R,若,求实数的取值范围.
(本小题满分13分)一个袋中有4个大小相同的小球,其中红球1个,白球2个,黑球1个,现从袋中有放回地取球,每次随机取一个,求:(Ⅰ)连续取两次都是白球的概率;(Ⅱ)若取一个红球记2分,取一个白球记1分,取一个黑球记0 分,连续取三次分数之和为4分的概率.
(本小题满分12分) 已知函数(Ⅰ)求的最小正周期(Ⅱ)求在区间上的最值及相应的值。
(本小题满分14分)设,函数.(1) 若,求曲线在处的切线方程;(2) 若无零点,求实数的取值范围;(3) 若有两个相异零点,求证: .
(本题满分14分已知椭圆:的离心率为,以原点为圆心,椭圆的短半轴长为半径的圆与直线相切.⑴求椭圆C的方程;⑵设,、是椭圆上关于轴对称的任意两个不同的点,连结交椭圆于另一点,求直线的斜率的取值范围;⑶在⑵的条件下,证明直线与轴相交于定点.
在数列中,,,(1)求数列的通项公式;(2)求数列的前项和;(3)在(2)的条件下指出数列的最小项的值,并证明你的结论。