已知椭圆的中心在原点,焦点在轴上,离心率为,右焦点到右顶点的距离为.(Ⅰ)求椭圆的标准方程;(Ⅱ)若直线与椭圆交于两点,是否存在实数,使成立?若存在,求的值;若不存在,请说明理由.
如图,在直三棱柱(侧棱和底面垂直的棱柱)中,平面侧面,,,且满足. (1)求证:; (2)求点的距离; (3)求二面角的平面角的余弦值.
已知函数,.求: (1)函数的最小值及取得最小值的自变量的集合; (2)函数的单调增区间.
已知函数f(x)=log4(4x+1)+kx(k∈R)是偶函数. (1)求k的值; (2)探究函数f(x)=ax+(a、b是正常数)在区间和上的单调性(只需写出结论,不要求证明).并利用所得结论,求使方程f(x)-log4m=0有解的m的取值范围.
已知增函数是定义在(-1,1)上的奇函数,其中,a为正整数,且满足. ⑴求函数的解析式; ⑵求满足的的范围;
已知二次函数在区间上有最大值,求实数的值