某书商为提高某套丛书的销量,准备举办一场展销会.据市场调查,当每套丛书售价定为x元时,销售量可达到15—0.1x万套.现出版社为配合该书商的活动,决定进行价格改革,将每套丛书的供货价格分成固定价格和浮动价格两部分,其中固定价格为30元,浮动价格(单位:元)与销售量(单位:万套)成反比,比例系数为10.假设不计其他成本,即销售每套丛书的利润=售价-供货价格.问:(1)每套丛书售价定为100元时,书商能获得的总利润是多少万元?(2)每套丛书售价定为多少元时,单套丛书的利润最大?
已知函数f(x)=cos(2x-)+sin2x-cos2x.(Ⅰ)求函数f(x)的最小正周期及其图象的对称轴方程;(Ⅱ)设函数g(x)=[f(x)]2+f(x),求g(x)的值域.
已知函数.(Ⅰ)请写出函数在每段区间上的解析式,并在图中的直角坐标系中作出函数的图象;(II)若不等式对任意的实数恒成立,求实数的取值范围.
已知在直角坐标系中,曲线的参数方程为:(为参数),在极坐标系(与直角坐标系取相同的长度单位,且以原点为极点,以轴正半轴为极轴)中,直线的极坐标方程为:.(Ⅰ)写出曲线和直线在直角坐标系下的方程;(II)设点是曲线上的一个动点,求它到直线的距离的最小值.
如图,是圆的内接四边形,,过点的圆的切线与的延长线交于点,证明:(Ⅰ)(II)
已知函数(I)求函数的最小值;(II)对于函数和定义域内的任意实数,若存在常数,使得不等式和都成立,则称直线是函数和的“分界线”.设函数,,试问函数和是否存在“分界线”?若存在,求出“分界线”的方程.若不存在请说明理由.