某服装厂生产一种服装,每件服装的成本为40元,出厂单价定为60元,该厂为鼓励销售商订购,决定当一次订购量超过100件时,每多订购一件,订购的全部服装的出场单价就降低0.02元,根据市场调查,销售商一次订购量不会超过600件.(1)设一次订购x件,服装的实际出厂单价为p元,写出函数的表达式;(2)当销售商一次订购多少件服装时,该厂获得的利润最大?其最大利润是多少?
.(本题满分14分)已知函数f(x)=sin(ωx+φ),其中ω>0,|φ|<. (1)若coscosφ-sinsinφ=0,求φ的值; (2)在(1)的条件下,若函数f(x)的图象的相邻两条对称轴之间的距离等于,求函数f(x)的解析式;并求最小正实数m,使得函数f(x)的图象向左平移m个单位后所对应的函数是偶函数.
(本题满分12分)设函数f(x)=a·b,其中向量a=(2cosx,1),b=(cosx,sin2x+m). (1)求函数f(x)的最小正周期和在[0,π]上的单调递增区间. (2)当x∈时,-4<f(x)<4恒成立,求实数m的取值范围.
(本小题满分12分)设, (1)求f(x)+f(60°-x)(2)求f(1°)+f(2°)+…+f(59°)的值
.(本题满分12分)若关于x的方程x2+2ax+2-a=0有两个不相等的实根,求分别满足下列条件的a的取值范围. (1)方程两根都小于1; (2)方程一根大于2,另一根小于2.
(本小题满分12分)设集合A={x|x2<4},B={x|1<}. (1)求集合A∩B; (2)若不等式2x2+ax+b<0的解集为B,求a,b的值.