某公司招聘员工,先由两位专家面试,若两位专家都同意通过,则视作通过初审予以录用;若两位专家都未同意通过,则视作未通过初审不予录用;当这两位专家意见不一致时,再由第三位专家进行复审,若能通过复审则予以录用,否则不予录用.设应聘人员获得每位初审专家通过的概率为0.5,复审能通过的概率为0.3,各专家评审的结果相互独立.(Ⅰ)求某应聘人员被录用的概率;(Ⅱ)若4人应聘,设X为被录用的人数,试求随机变量X的分布列和数学期望.
(1)求值: (2) 已知,,,求的值.
如图,直线:与抛物线C:相切于点A (1)求实数的值;(2)求以点A为圆心,且与抛物线C的准线相切的圆的方程
已知 (1)若A,B,C三点共线,求实数的值;(2)若为钝角,求实数的取值范围.
已知函数,. (1)当时,若上单调递减,求a的取值范围; (2)求满足下列条件的所有整数对:存在,使得的最大值,的最小值;
(本小题满分12分) 已知:函数是R上的单调函数,且,对于任意都有成立. (1)求证:是奇函数; (2)若满足对任意实数恒成立,求k的范围.