如图,二次函数 y = a x 2 + b x + c 的图象的顶点 C 的坐标为 ( 0 , - 2 ) ,交 x 轴于 A 、 B 两点,其中 A ( - 1 , 0 ) ,直线 l : x = m ( m > 1 ) 与x轴交于 D . (1)求二次函数的解析式和 B 的坐标; (2)在直线 l 上找点 P ( P 在第一象限),使得以 P 、 D 、 B 为顶点的三角形与以 B 、 C 、 O 为顶点的三角形相似,求点 P 的坐标(用含 m 的代数式表示); (3)在(2)成立的条件下,在抛物线上是否存在第一象限内的点 Q ,使 △ B P Q 是以 P 为直角顶点的等腰直角三角形?如果存在,请求出点 Q 的坐标;如果不存在,请说明理由.
如图,在△ABC中,点D是BC的中点,DE⊥AB于点E,DF⊥AC于点F,且DE=DF. 求证:(1)△BDE≌△CDF; (2)AB=AC.
在△ABC中,∠ACB=90°,CD⊥AB于D,AC=20,BC=15, (1)求AB的长; (2)求CD的长.
如图所示,要在公园(四边形ABCD)中建造一座音乐喷泉,喷泉位置应符合如下要求: (1)到公园两个出入口A、C的距离相等; (2)到公园两边围墙AB、AD的距离相等. 请你用尺规作图的方法确定喷泉的位置P.(不必写作法,但要保留作图痕迹)
某商场销售一种西装和领带,西装每套定价1000元,领带每条定价200元.“国庆节” 期间商场决定开展促销活动,活动期间向客户提供两种优惠方案. 方案一:买一套西装送一条领带; 方案二:西装和领带都按定价的90%付款. 现某客户要到该商场购买西装20套,领带x条(x>20). (1)若该客户按方案一购买,需付款 元.(用含x的代数式表示) 若该客户按方案二购买,需付款 元.(用含x的代数式表示) (2)若x=30,通过计算说明此时按(1)哪种方案购买较为合算? (3)当x=30时,你能给出一种更为省钱的购买方案吗?试写出你的购买方法.
国庆放假时,小红一家三口一起乘小轿车去乡下探望爷爷、奶奶和外公、外婆.早上从家里出发,向东走了6千米到超市买东西,然后又向东走了1.5千米到爷爷家,中午从爷爷家出发向西走了12千米到外公家,晚上返回家里. (1)若以家为原点,向东为正方向,用1个单位长度表示1千米,请将超市、爷爷家和外公家的位置在下面数轴上分别用点A、B、C表示出来; (2)问超市A和外公家C相距多少千米? (3)若小轿车每千米耗油0.08升,求小红一家从出发到返回家所经历路程小车的耗油量.