甲、乙两运动员进行射击训练,已知他们击中目标的环数都稳定在7、8、9、10环,且每次射击成绩互不影响,射击环数的频率分布表如下:若将频率视为概率,回答下列问题:(1)求表中x,y,z的值及甲运动员击中10环的概率;(2)求甲运动员在3次射击中至少有一次击中9环以上(含9环)的概率;(3)若甲运动员射击2次,乙运动员射击1次,表示这3次射击中击中9环以上(含9环)的次数,求的分布列及
已知集合,,(1)求,;(2)若,求实数的取值范围.
已知函数(1)当时,求曲线在点处的切线方程;(2)当时,讨论的单调性.
已知椭圆 的离心率为,过的左焦点的直线被圆截得的弦长为.(1)求椭圆的方程;(2)设的右焦点为,在圆上是否存在点,满足,若存在,指出有几个这样的点(不必求出点的坐标);若不存在,说明理由.
已知等差数列的首项公差且分别是等比数列的(1)求数列和的通项公式;(2)设数列对任意正整数均有成立,求的值.
如图所示的多面体中,是菱形,是矩形,面,.(1)求证:.(2)若