甲、乙两运动员进行射击训练,已知他们击中目标的环数都稳定在7、8、9、10环,且每次射击成绩互不影响,射击环数的频率分布表如下:若将频率视为概率,回答下列问题:(1)求表中x,y,z的值及甲运动员击中10环的概率;(2)求甲运动员在3次射击中至少有一次击中9环以上(含9环)的概率;(3)若甲运动员射击2次,乙运动员射击1次,表示这3次射击中击中9环以上(含9环)的次数,求的分布列及
过点作直线与双曲线相交于两点、,且为线段的中点,求这条直线的方程.
已知椭圆的左右焦点坐标分别是,离心率,直线与椭圆交于不同的两点. (1)求椭圆的方程; (2)求弦的长度.
甲、乙两人参加普法知识竞赛,共有10道不同的题目,其中选择题6道,判断题4道,甲、乙两人各抽一道(不重复). (1)甲抽到选择题,乙抽到判断题的概率是多少? (2)甲、乙二人中至少有一人抽到选择题的概率是多少?
若双曲线与椭圆有相同的焦点,与双曲线有相同渐近线,求双曲线方程.
已知数列满足:且.(1)求数列的前三项;(2)是否存在一个实数,使数列为等差数列?若存在,求出的值;若不存在,说明理由;(3)求数列的前项和.