甲、乙两运动员进行射击训练,已知他们击中目标的环数都稳定在7、8、9、10环,且每次射击成绩互不影响,射击环数的频率分布表如下:若将频率视为概率,回答下列问题:(1)求表中x,y,z的值及甲运动员击中10环的概率;(2)求甲运动员在3次射击中至少有一次击中9环以上(含9环)的概率;(3)若甲运动员射击2次,乙运动员射击1次,表示这3次射击中击中9环以上(含9环)的次数,求的分布列及
如图,在四棱锥中,底面是正方形,侧面底面,若、分别为、的中点. (Ⅰ) 求证://平面; (Ⅱ) 求证:平面平面;
已知若,求的值;求的最大值
在中, (1)求的值; (2)设,求的面积.
已知数列的前n项和为,点在直线上.数列{bn}满足,前9项和为153. (Ⅰ)求数列、的通项公式; (Ⅱ)设,数列的前n和为,求使不等式对一切都成立的最大正整数k的值.
已知且,若恒成立, (Ⅰ)求的最小值; (Ⅱ)若对任意的恒成立,求实数的取值范围.