已知直线的方程为3x+4y-12=0,求满足下列条件的直线的方程.(1) ,且直线过点(-1,3);(2) ,且与两坐标轴围成的三角形面积为4.
(本小题满分12分)已知函数. (1)求函数的最小正周期和单调递减区间; (2)记的内角的对应边分别为,且,,求的取值范围.
如图所示,椭圆C:的两个焦点为、,短轴两个端点为 、.已知、、成等比数列,,与轴不垂直的直线与 C 交于不同的两点、,记直线、的斜率分别为、,且. (Ⅰ)求椭圆的方程; (Ⅱ)求证直线与轴相交于定点,并求出定点坐标; (Ⅲ)当弦的中点落在四边形内(包括边界)时,求直线 的斜率的取值范围.
已知数列{}中,,且对任意正整数都成立,数列{}的前n项和为 (1)若,且,求a; (2)是否存在实数k,使数列{}是公比不为1的等比数列,且任意相邻三项按某顺序排列后成等差数列,若存在,求出所有k值,若不存在,请说明理由; (3)若.
(原创)已知集合是满足下列性质的函数的全体:在定义域内存在,使得成立. (1)函数是否属于集合?说明理由; (2)设函数,求的取值范围; (3)设函数图象与函数的图象有交点,证明:函数.
(本小题满分15分)如图所示,正方形与直角梯形所在平面互相垂直,,,. (1)求证:平面; (2)求证:平面; (3)求四面体的体积.