已知直线的方程为3x+4y-12=0,求满足下列条件的直线的方程.(1) ,且直线过点(-1,3);(2) ,且与两坐标轴围成的三角形面积为4.
(本小题满分13分)如图,在四棱锥中,底面是正方形,底面,, 点是的中点,,且交于点. (Ⅰ)求证:平面; (Ⅱ)求证:直线平面; (Ⅲ)求直线与平面所成角的余弦值.
(本小题满分12分)已知等比数列满足:,且是的等差中项. (Ⅰ)求数列的通项公式; (Ⅱ)若数列{an}是单调递增的,令,,求使成立的正整数的最小值.
(本小题满分12分)已知向量,设函数 (Ⅰ)求在区间上的零点; (Ⅱ)若角是△中的最小内角,求的取值范围.
(本小题满分14分) 设函数,. (Ⅰ)讨论函数的单调性; (Ⅱ)若存在,使得成立,求满足条件的最大整数; (Ⅲ)如果对任意的,都有成立,求实数的取值范围.
(本小题满分13分)如图,已知圆E:,点,P是圆E上任意一点.线段PF的垂直平分线和半径PE相交于Q. (Ⅰ)求动点Q的轨迹的方程; (Ⅱ)设直线与(Ⅰ)中轨迹相交于两点, 直线的斜率分别为(其中).△的面积为, 以为直径的圆的面积分别为.若恰好构成等比数列, 求的取值范围.