已知曲线C的极坐标方程为,直线的参数方程为(t为参数,) (1)把曲线C的极坐标方程化为直角坐标方程,并说明曲线C的形状; (2)若直线经过点,求直线被曲线C截得的线段AB的长。
甲、乙两篮球运动员进行定点投篮,每人各投4个球,甲投篮命中的概率为,乙投篮命中的概率为.(1)求甲至多命中2个且乙至少命中2个的概率;(2)若规定每投篮一次命中得3分,未命中得分,求乙所得分数的概率分布和数学期望.
已知向量,函数的最小正周期为.(1)求函数的单调增区间;(2)如果△ABC的三边所对的角分别为,且满足的值.
设函数.(1)当(为自然对数的底数)时,求的最小值;(2)讨论函数零点的个数;(3)若对任意恒成立,求的取值范围.
设椭圆的左右焦点分别为、,是椭圆上的一点,,坐标原点到直线的距离为.(1)求椭圆的方程; (2)设是椭圆上的一点,,连接QN的直线交轴于点,若,求直线的斜率.
如图,已知⊥平面,∥,=2,且是的中点.(1)求证:∥平面;(2)求证:平面BCE⊥平面;(3)求此多面体的体积.