如图,已知四边形为梯形,, ,四边形为矩形,且平面平面,,点为的中点.(Ⅰ)求证:平面;(Ⅱ)求证:平面平面;(Ⅲ)求三棱锥的体积.
已知命题:方程表示焦点在轴上的双曲线。命题曲线与轴交于不同的两点,若为假命题,为真命题,求实数的取值范围。
已知函数f(x)=-x3+x2-2x(a∈R).(1)当a=3时,求函数f(x)的单调区间;(2)若对于任意x∈[1,+∞)都有f′(x)<2(a-1)成立,求实数a的取值范围;(3)若过点可作函数y=f(x)图象的三条不同切线,求实数a的取值范围.
如图,E是以AB为直径的半圆上异于点A、B的点,矩形ABCD所在的平面垂直于该半圆所在的平面,且AB=2AD=2(1)求证:(2)设平面与半圆弧的另一个交点为①试证:②若求三棱锥的体积
已知命题:方程表示椭圆;:方程表示双曲线. 若“或”为真,“且” 为假,求实数的取值范围.
如图,中,平面外一条线段AB满足AB∥DE,AB,AB⊥AC,F是CD的中点.(1)求证:AF∥平面BCE(2)若AC=AD,证明:AF⊥平面