已知正项数列的首项,前项和满足.(Ⅰ)求证:为等差数列,并求数列的通项公式;(Ⅱ)记数列的前项和为,若对任意的,不等式恒成立,求实数的取值范围.
在中,内角的对边分别是,且. (1)求; (2)设,为的面积,求的最大值,并指出此时的最值.
从某居民区随机抽取10个家庭,获得第个家庭的月收入(单位:千元)与月储蓄(单位:千元)的数据资料,算得.(1)求家庭的月储蓄对月收入的线性回归方程; (2)判断变量与之间是正相关还是负相关; (3)若该居民区某家庭月收入为7千元,预测该家庭的月储蓄. 附:线性回归方程中,,其中为样本平均值,线性回归方程也可写为.
设数列满足:. (1)求的通项公式及前项和; (2)已知是等差数列,为前项和,且,求.
如图,椭圆的中心为原点,长轴在轴上,离心率,过左焦点作轴的垂线交椭圆于两点,. (1)求该椭圆的标准方程; (2)取平行于轴的直线与椭圆相交于不同的两,过作圆心为的圆,使椭圆上的其余点均在圆外.求的面积的最大值,并写出对应的圆的标准方程.
对正整数,记,. (1)求集合中元素的个数; (2)若的子集中任意两个元素之和不是整数的平方,则称为"稀疏集".求的最大值,使能分成两个不相交的稀疏集的并集.