设数列an满足:a1=1,an+1=3an,n∈N+. (1)求an的通项公式及前n项和Sn; (2)已知bn是等差数列,Tn为前n项和,且b1=b2,b3=a1+a2+a3,求T20.
已知椭圆C:(),其离心率为,两准线之间的距离为。(1)求之值;(2)设点A坐标为(6, 0),B为椭圆C上的动点,以A为直角顶点,作等腰直角△ABP(字母A,B,P按顺时针方向排列),求P点的轨迹方程。
设定义在[0,2]上的函数满足下列条件:①对于,总有,且,;②对于,若,则.证明:(1)();(2)时,.
在数列中,,是给定的非零整数,.(1)若,,求;(2)证明:从中一定可以选取无穷多项组成两个不同的常数数列.
设向量为直角坐标平面内x轴,y轴正方向上的单位向量.若向量,,且.(1)求满足上述条件的点的轨迹方程;(2)设,问是否存在常数,使得恒成立?证明你的结论.
如图,斜三棱柱的所有棱长均为,侧面底面,且.(1) 求异面直线与间的距离;(2) 求侧面与底面所成二面角的度数.