对正整数n,记In={1,2,3...n},Pn={mk|m∈In,k∈In}. (1)求集合P7中元素的个数; (2)若Pn的子集A中任意两个元素之和不是整数的平方,则称A为"稀疏集".求n的最大值,使Pn能分成两个不相交的稀疏集的并集.
已知椭圆的离心率为,直线与以原点为圆心、椭圆的短半轴长为半径的圆相切. (1)求椭圆的方程; (2)如图,、、是椭圆的顶点,是椭圆上除顶点外的任意点,直线交轴于点,直线交于点,设的斜率为,的斜率为,求证:为定值.
在数列中,,,对任意成立,令,且是等比数列. (1)求实数的值; (2)求数列的通项公式; (3)求证:.
如图,已知矩形中,,,将矩形沿对角线把折起,使移到点,且在平面上的射影恰好在上. (1)求证:; (2)求证:平面平面; (3)求二面角的余弦值.
在一次联考后,某校对甲、乙两个文科班的数学考试成绩进行分析,规定:大于或等于分为优秀,分以下为非优秀,统计成绩后,得到如下的列联表,且已知在甲、乙两个文科班全部人中随机抽取人为优秀的概率为.
(1)请完成上面的列联表; (2)根据列联表的数据,能否有的把握认为成绩与班级有关系? (3)在甲、乙两个理科班优秀的学生中随机抽取两名学生,用表示抽得甲班的学生人数,求的分布列.
设向量,,. (1)若,求的值; (2)设函数,求的最大、最小值.