如图一,平面四边形关于直线对称,.把沿折起(如图二),使二面角的余弦值等于.对于图二,(Ⅰ)求;(Ⅱ)证明:平面;(Ⅲ)求直线与平面所成角的正弦值.
已知函数, (I)当时,求函数的极值; (II)若函数在区间上是单调增函数,求实数的取值范围.
已知数列的前n项和为,对一切正整数n,点都在函数的图像上,且在点处的切线的斜率为(I)求数列的通项公式;(II)若,求数列的前n项和
(本小题满分12分)已知△ABC中,角A、B、C的对边分别是a、b、c,且满足,设∥,试求角B的大小。
(本小题满分12分)已知函数(1)若曲线在处与直线相切,求的值;(2)若在区间内有极值,求的取值范围.
(本小题满分10分)已知集合是满足下列性质的函数的全体:在定义域内存在,使得成立.(1)试判断函数是否属于集合?请说明理由;(2)设函数,求实数的取值范围.