从某居民区随机抽取10个家庭,获得第i个家庭的月收入xi(单位:千元)与月储蓄yi(单位:千元)的数据资料,算得∑i=110xi=80,∑i=110yi=20,∑i=110xiyi=184,∑i=110xi2=720.(1)求家庭的月储蓄y对月收入x的线性回归方程y=bx+a; (2)判断变量x与y之间是正相关还是负相关; (3)若该居民区某家庭月收入为7千元,预测该家庭的月储蓄. 附:线性回归方程y=bx+a中,b=∑i=1nxiyi-nx·y∑i=1nxi2-nx2,a=y-bx,其中x,y为样本平均值,线性回归方程也可写为y^=b^x+a^.
已知函数在点处取得极小值-4,使其导数的的取值范围为,求: (1)的解析式; (2),求的最大值;
在 △ A B C 中,角 A , B , C 的对边分别为 a , b , c , B = π 3 , cos A = 4 5 , b = 3 .
(Ⅰ)求 sin C 的值;
(Ⅱ)求 △ A B C 的面积.
已知实数列等比数列,其中成等差数列.(Ⅰ)求数列的通项公式;(Ⅱ)数列的前项和记为证明: <128…).
已知双曲线的离心率为,右准线方程为。(Ⅰ)求双曲线C的方程;(Ⅱ)已知直线与双曲线C交于不同的两点A,B,且线段AB的中点在圆上,求m的值.
设数列满足,. (Ⅰ)求数列的通项;(Ⅱ)设,求数列的前项和.