已知集合是正整数的一个排列,函数 对于,定义:,,称为的满意指数.排列为排列的生成列.(Ⅰ)当时,写出排列的生成列;(Ⅱ)证明:若和为中两个不同排列,则它们的生成列也不同;(Ⅲ)对于中的排列,进行如下操作:将排列从左至右第一个满意指数为负数的项调至首项,其它各项顺序不变,得到一个新的排列.证明:新的排列的各项满意指数之和比原排列的各项满意指数之和至少增加.
已知数列满足: (Ⅰ)设求数列的通项公式; (Ⅱ)求数列的前项和。
如图,抛物线与圆相交于四个不同点。 (Ⅰ)求半径的取值范围;(Ⅱ)求四边形面积的最大值。
设函数有两个极值点,且满足: (Ⅰ)求动点移动所形成的区域的面积;(Ⅱ)当变化时,求极大值的取值范围。
规定记号“”表示一种运算,即, 记. (1)求函数的表达式; (2)求函数的最小正周期; (3)若函数在处取到最大值,求的值.
某商店经销一种奥运纪念品,据预测,在元旦后的20天内的每天销售量(件)与价格(元)均为时间t(天)的函数,且第t天的销售量近似满足g(t)=80-2t(件),第t天的价格近似满足(元). (1)试写出该纪念品的日销售额y与时间t(0≤t≤20)的函数关系式; (2)求该纪念品的日销售额y的最大值与最小值.