已知集合是正整数的一个排列,函数 对于,定义:,,称为的满意指数.排列为排列的生成列.(Ⅰ)当时,写出排列的生成列;(Ⅱ)证明:若和为中两个不同排列,则它们的生成列也不同;(Ⅲ)对于中的排列,进行如下操作:将排列从左至右第一个满意指数为负数的项调至首项,其它各项顺序不变,得到一个新的排列.证明:新的排列的各项满意指数之和比原排列的各项满意指数之和至少增加.
设抛物线的焦点为F,准线为,过点F作一直线与抛物线交于A、B两点,再分别过点A、B作抛物线的切线,这两条切线的交点记为P. (1)证明:直线PA与PB相互垂直,且点P在准线上; (2)是否存在常数,使等式恒成立?若存在,求出的值;若不存在,说明理由.
已知数列的前项和为,,且. (1)计算; (2)猜想的表达式,并证明.
在直四棱柱ABCD—A1B1C1D1中,已知底面四边形 ABCD是边长为3的菱形,且DB=3,A1A=2,点E 在线段BC上,点F在线段D1C1上,且BE=D1F=1. (1)求证:直线EF∥平面B1D1DB; (2)求二面角F—DB—C的余弦值.
设均为锐角,且.求证:.
设,椭圆方程为,抛物线方程为.如图所示,过点作轴的平行线,与抛物线在第一象限的交点为,已知抛物线在点的切线经过椭圆的右焦点. (1)求满足条件的椭圆方程和抛物线方程; (2)设分别是椭圆长轴的左、右端点,试探究在抛物线上是否存在点,使得为直角三角形?若存在,请指出共有几个这样的点?并说明理由(不必具体求出这些点的坐标).