已知椭圆的离心率为,右焦点为(,0),斜率为1的直线与椭圆G交与A、B两点,以AB为底边作等腰三角形,顶点为P(-3,2).(I)求椭圆G的方程; (II)求的面积.
如图,椭圆上的点M与椭圆右焦点的连线与x轴垂直,且OM(O是坐标原点)与椭圆长轴和短轴端点的连线AB平行. (1)求椭圆的离心率; (2)过且与AB垂直的直线交椭圆于P、Q,若的面积是20,求此时椭圆的方程.
设函数. (1)若在时有极值,求实数的值和的极大值; (2)若在定义域上是增函数,求实数的取值范围.
已知椭圆C的两焦点分别为,长轴长为6, ⑴求椭圆C的标准方程; ⑵已知过点(0,2)且斜率为1的直线交椭圆C于A 、B两点,求线段AB的长度。.
以下是某地搜集到的新房屋的销售价格(万元)和房屋的面积()的数据 ,若由资料可知对呈线性相关关系。 试求:(1)线性回归方程; (2)根据(1)的结果估计当房屋面积为时的销售价格. 参考公式:
设数列的前项和为,且满足. (1)求,,,的值并写出其通项公式;(2)证明数列是等比数列.