2016年敦奥运会的圣火将点燃各国体运健儿的拼搏激情,我国跳水健儿为积极准备奥运会,在著名的海滨城市青岛举行了一场奥运选拔赛,其中两位甲、乙运动员为争夺最后一个参赛名额进行七轮激烈地争夺,甲、乙两名选手七轮比赛的得分如图所示,现从两名运动员每轮得分中不低于80,不高于90的得分中任选,(Ⅰ)若任选3个,求甲的三个得分与其每轮平均得分的差的绝对值都不超过2分的概率.(Ⅱ)若任选1个,求甲乙两位运动员得分之差的绝对值的分布列及其期望.
已知椭圆 x 2 a 2 + y 2 b 2 = 1 ( a > b > 0 ) 的左焦点为 F (﹣ c , 0 ) ,右顶点为A,点E的坐标为(0,c), △ EFA 的面积为 b 2 2 .
(I)求椭圆的离心率;
(II)设点Q在线段AE上, | FQ | = 3 2 c ,延长线段FQ与椭圆交于点P,点M,N在x轴上, PM ∥ QN ,且直线PM与直线QN间的距离为c,四边形PQNM的面积为3c.
(i)求直线FP的斜率;
(ii)求椭圆的方程.
设a, b ∈ R , | a | ≤ 1 .已知函数 f ( x ) = x 3 ﹣ 6 x 2 ﹣ 3 a ( a ﹣ 4 ) x + b , g ( x ) = e x f ( x ) .
(Ⅰ)求 f ( x ) 的单调区间;
(Ⅱ)已知函数 y = g ( x ) 和 y = e x 的图象在公共点 ( x 0 , y 0 ) 处有相同的切线,
(i)求证: f ( x )在 x = x 0 处的导数等于0;
(ii)若关于x的不等式 g ( x ) ≤ e x 在区间 [ x 0 ﹣ 1 , x 0 + 1 ] 上恒成立,求b的取值范围.
已知 { a n } 为等差数列,前 n 项和为 S n ( n ∈ N * ) , { b n } 是首项为2的等比数列,且公比大于0, b 2 + b 3 = 12 , b 3 = a 4 ﹣ 2 a 1 , S 11 = 11 b 4 .
(Ⅰ)求 { a n } 和 { b n } 的通项公式;
(Ⅱ)求数列 { a 2 n b 2 n - 1 } 的前n项和 ( n ∈ N * ) .
如图,在四棱锥 P ﹣ ABCD 中, AD ⊥ 平面 PDC , AD ∥ BC , PD ⊥ PB , AD = 1 , BC = 3 , CD = 4 , PD = 2 .
(I)求异面直线AP与BC所成角的余弦值;
(II)求证: PD ⊥ 平面 P B C ;
(II)求直线AB与平面PBC所成角的正弦值.
电视台播放甲、乙两套连续剧,每次播放连续剧时,需要播放广告.已知每次播放甲、乙两套连续剧时,连续剧播放时长、广告播放时长、收视人次如下表所示:
连续剧播放时长(分钟)
广告播放时长(分钟)
收视人次(万)
甲
70
5
60
乙
25
已知电视台每周安排的甲、乙连续剧的总播放时间不多于600分钟,广告的总播放时间不少于30分钟,且甲连续剧播放的次数不多于乙连续剧播放次数的2倍.分别用x,y表示每周计划播出的甲、乙两套连续剧的次数.
(I)用x,y列出满足题目条件的数学关系式,并画出相应的平面区域;
(II)问电视台每周播出甲、乙两套连续剧各多少次,才能使总收视人次最多?