2016年敦奥运会的圣火将点燃各国体运健儿的拼搏激情,我国跳水健儿为积极准备奥运会,在著名的海滨城市青岛举行了一场奥运选拔赛,其中两位甲、乙运动员为争夺最后一个参赛名额进行七轮激烈地争夺,甲、乙两名选手七轮比赛的得分如图所示,现从两名运动员每轮得分中不低于80,不高于90的得分中任选,(Ⅰ)若任选3个,求甲的三个得分与其每轮平均得分的差的绝对值都不超过2分的概率.(Ⅱ)若任选1个,求甲乙两位运动员得分之差的绝对值的分布列及其期望.
(本小题满分12分) 如图,四边形ABCD是平面图形,BC=CD=1,AB=BD, ABD=,设BCD=,四边形ABCD的面积为S,求函数S=的最大值.
设函数()过点. (1)求函数的值域; (2)用五点法画出函数在一个周期上的图象(要求列表).
(本小题满分12分) (1)已知,求的值; (2)已知求的值.
已知函数的图象在点处的切线的斜率为,且在处取得极小值。 (1)求的解析式; (2)已知函数定义域为实数集,若存在区间,使得在的值域也是,称区间为函数的“保值区间”. ①当时,请写出函数的一个“保值区间”(不必证明); ②当时,问是否存在“保值区间”?若存在,写出一个“保值区间”并给予证明;若不存在,请说明理由.
某企业生产产品,拟开发新产品,根据市场调查与预测,产品的利润与投资额关系成正比例关系,如图一;若投资产品,至少需要万元,其利润与投资额关系为,如图二.(单位:万元) (1)分别将两种产品的利润表示为投资金额的函数关系式; (2)该企业已筹集到万元资金,并全部投入两种产品的生产,问:怎样分配这万元投资,才能使企业获得最大利润?其最大利润约为多少万元?