首页 / 高中数学 / 试题详细
  • 更新 2022-09-03
  • 科目 数学
  • 题型 解答题
  • 难度 较易
  • 浏览 1226

已知函数f(x)=x2+ax-lnx,a∈R;
(1)若函数f(x)在[1,2]上是减函数,求实数a的取值范围;
(2)令g(x)=f(x)-x2,是否存在实数a,当x∈(0,e](e是自然对数的底数)时,函数g(x)的最小值是3,若存在,求出a的值;若不存在,说明理由.

登录免费查看答案和解析

已知函数f(x)=x2+ax-lnx,a∈R;(1)若函数f