如图,已知 A ( - 3 , - 3 ) , B ( - 2 , - 1 ) , C ( - 1 , - 2 ) 是直角坐标平面上三点. (1)请画出 Δ A B C 关于原点 O 对称的 Δ A 1 B 1 C 1 , (2)请写出点 B 关天 y 轴对称的点 B 2 的坐标,若将点 B 2 向上平移 h 个单位,使其落在 Δ A 1 B 1 C 1 内部,指出 h 的取值范围.
如图1,已知二次函数 y = a x 2 + bx + c ( a 、 b 、 c 为常数, a ≠ 0 ) 的图象过点 O ( 0 , 0 ) 和点 A ( 4 , 0 ) ,函数图象最低点 M 的纵坐标为 − 8 3 ,直线 l 的解析式为 y = x .
(1)求二次函数的解析式;
(2)直线 l 沿 x 轴向右平移,得直线 l ' , l ' 与线段 OA 相交于点 B ,与 x 轴下方的抛物线相交于点 C ,过点 C 作 CE ⊥ x 轴于点 E ,把 ΔBCE 沿直线 l ' 折叠,当点 E 恰好落在抛物线上点 E ' 时(图 2 ) ,求直线 l ' 的解析式;
(3)在(2)的条件下, l ' 与 y 轴交于点 N ,把 ΔBON 绕点 O 逆时针旋转 135 ° 得到△ B ' ON ' , P 为 l ' 上的动点,当△ PB ' N ' 为等腰三角形时,求符合条件的点 P 的坐标.
如图,在正方形 ABCD 中,点 E 、 G 分别是边 AD 、 BC 的中点, AF = 1 4 AB .
(1)求证: EF ⊥ AG ;
(2)若点 F 、 G 分别在射线 AB 、 BC 上同时向右、向上运动,点 G 运动速度是点 F 运动速度的2倍, EF ⊥ AG 是否成立(只写结果,不需说明理由)?
(3)正方形 ABCD 的边长为4, P 是正方形 ABCD 内一点,当 S ΔPAB = S ΔOAB ,求 ΔPAB 周长的最小值.
学校准备租用一批汽车,现有甲、乙两种大客车,甲种客车每辆载客量45人,乙种客车每辆载客量30人.已知1辆甲种客车和3辆乙种客车共需租金1240元,3辆甲种客车和2辆乙种客车共需租金1760元.
(1)求1辆甲种客车和1辆乙种客车的租金分别是多少元?
(2)学校计划租用甲、乙两种客车共8辆,送330名师生集体外出活动,最节省的租车费用是多少?
如图, 在 Rt Δ ACB 中, ∠ ACB = 90 ° ,以 AC 为直径作 ⊙ O 交 AB 于点 D , E 为 BC 的中点, 连接 DE 并延长交 AC 的延长线于点 F .
(1) 求证: DE 是 ⊙ O 的切线;
(2) 若 CF = 2 , DF = 4 ,求 ⊙ O 直径的长 .
如图,直线 y = kx ( k 为常数, k ≠ 0 ) 与双曲线 y = m x ( m 为常数, m > 0 ) 的交点为 A 、 B , AC ⊥ x 轴于点 C , ∠ AOC = 30 ° , OA = 2 .
(1)求 m 的值;
(2)点 P 在 y 轴上,如果 S ΔABP = 3 k ,求 P 点的坐标.