已知函数(,),.(1)求函数的单调区间,并确定其零点个数;(2)若在其定义域内单调递增,求的取值范围;(3)证明不等式 ().
已知点.(Ⅰ)若,求和的值(Ⅱ)若,其中为坐标原点,求的值.
设是定义在上以2为周期的函数,对,用表示区间.已知当时,函数.(1)求在上的解析式;(2)对自然数,求集合{使方程在上有两个不相等的实根}
设函数的图象关于点对称. (Ⅰ)求; (Ⅱ)求函数的单调增区间; (Ⅲ)求函数在上的最大值和取最大值时的.
已知向量,分别求使下列结论成立的实数的值(Ⅰ);(Ⅱ)
定义:若数列满足,则称数列为“平方递推数列”。已知数列中,,点在函数的图像上,其中为正整数。(1)证明:数列是“平方递推数列”,且数列为等比数列。(2)设(1)中“平方递推数列”的前项之积为,即,求数列的通项及关于的表达式。(3)记,求数列的前项之和,并求使的的最小值。