已知函数.(1)求函数的单调区间; (2)若恒成立,求实数k的取值范围;(3)证明:
(本小题满分10分)选修4-4:坐标系与参数方程在直角坐标系中,曲线的参数方程为(为参数),以原点为极点,以轴正半轴为极轴,建立极坐标系,曲线的极坐标方程为.求曲线的普通方程与曲线的直角坐标方程;试判断曲线与是否存在两个交点,若存在,求出两交点间的距离;若不存在,说明理由.
(本小题满分10分)选修4-1:几何证明选讲如图,过点作圆的割线与切线,为切点,连接,,的平分线与,分别交于点,,其中.求证:;求的大小.
(本小题满分12分)设函数,其中和是实数,曲线恒与轴相切于坐标原点.求常数的值;当时,关于的不等式恒成立,求实数的取值范围;求证:.
(本小题满分12分)在中,顶点,,、分别是的重心和内心,且.求顶点的轨迹的方程;过点的直线交曲线于、两点,是直线上一点,设直线、、的斜率分别为,,,试比较与的大小,并加以证明.
(本小题满分12分)如图,在四棱锥中,平面,,四边形满足,且,点为中点,点为边上的动点,且.求证:平面平面;是否存在实数,使得二面角的余弦值为?若存在,试求出实数的值;若不存在,说明理由.