(本小题满分12分)如图,在四棱锥中,平面,,四边形满足,且,点为中点,点为边上的动点,且.求证:平面平面;是否存在实数,使得二面角的余弦值为?若存在,试求出实数的值;若不存在,说明理由.
(本小题满分12分)甲、乙两人对弈棋局,甲胜、乙胜、和棋的概率都是,规定有一方累计2胜或者累计2和时,棋局结束。棋局结束时,若是累计两和的情形,则宣布甲乙都获得冠军;若一方累计2胜,则宣布该方获得冠军,另一方获得亚军。设结束时对弈的总局数为X. (1)设事件A:“X=3且甲获得冠军”,求A的概率; (2)求X的分布列和数学期望。
(本小题满分12分)如图是函数图像的一部分。 (1)求出的值; (2)当时,求不等式的解集。
已知函数. (1)当时,求在点处的切线方程; (2)若对于任意的,恒有成立,求的取值范围.
设椭圆的左焦点为F, 离心率为, 过点F且与x轴垂直的直线被椭圆截得的线段长为. (1) 求椭圆的方程; (2) 设A, B分别为椭圆的左右顶点, 过点F且斜率为k的直线与椭圆交于C, D两点.若, 求k的值.
已知数列中, (1)求证:是等比数列,并求的通项公式; (2)数列满足,数列的前n项和为,若不等式对一切恒成立,求的取值范围.