(本小题满分12分)在中,顶点,,、分别是的重心和内心,且.求顶点的轨迹的方程;过点的直线交曲线于、两点,是直线上一点,设直线、、的斜率分别为,,,试比较与的大小,并加以证明.
(本小题满分13分)已知椭圆:的焦距为,其短轴的两个端点与长轴的一个端点构成正三角形.(1)求椭圆的标准方程;(2)设为椭圆的左焦点,为直线上任意一点,过作的垂线交椭圆于点,,证明:平分线段(其中为坐标原点),
(本小题满分13分)如图甲,在平面四边形中,已知,,,,现将四边形沿折起,使平面平面(如图乙),设点,分别为棱,的中点.(1)证明平面;(2)求与平面所成角的正弦值;(3)求二面角的余弦值.
(本小题满分13分)设的内角,,所对边的长分别是,,,且,,.(1)求的值;(2)求的值.
(本小题满分13分)某校书法兴趣组有名男同学,,和名女同学,,,其年级情况如下表:
现从这名同学中随机选出人参加书法比赛(每人被选到的可能性相同).(1)用表中字母列举出所有可能的结果;(2)设为事件“选出的人来自不同年级且性别相同”,求事件发生的概率.
(本小题满分14分)已知函数,,函数的图象在点处的切线平行于轴.(1)确定与的关系;(2)试讨论函数的单调性; (3)证明:对任意,都有成立.