(本小题满分12分)在中,顶点,,、分别是的重心和内心,且.求顶点的轨迹的方程;过点的直线交曲线于、两点,是直线上一点,设直线、、的斜率分别为,,,试比较与的大小,并加以证明.
已知椭圆C的对称中心为原点O,焦点在x轴上,左右焦点分别为和,且||=2,点(1,)在该椭圆上.(1)求椭圆C的方程;(2)过的直线与椭圆C相交于A,B两点,以为圆心为半径的圆与直线相切,求AB的面积.
在三棱锥P-ABC中,.(1)求证:平面平面;(2)求BC与平面PAB所成角的正弦值;(3)在棱BC上是否存在点Q使得AQ与PC成的角?若存在,求BQ的长;若不存在,请说明理由.
(14分)某工厂在试验阶段大量生产一种零件,这种零件有、两项技术指标需要检测,设各项技术指标达标与否互不影响.若仅有A项技术指标达标的概率为,A、B两项技术指标都不达标的概率为.按质量检验规定:两项技术指标都达标的零件为合格品.(1)求一个零件经过检测为合格品的概率?(2)若任意抽取该种零件4个,设表示其中合格品的个数,求的分布列及数学期望.
已知函数().(1)求函数的最小正周期及在区间上的值域;(2)在中,,.若,求的面积.
(本小题满分10分)选修4-1:几何证明选讲如图,是的一条切线,切点为,直线,,都是的割线,已知.(Ⅰ)求证:;(II)若,求的值.