已知函数().(1)求函数的最小正周期及在区间上的值域;(2)在中,,.若,求的面积.
(12分)已知圆C1:与圆C2:相交于A、B两点。 ⑴ 求公共弦AB的长; ⑵ 求圆心在直线上,且过A、B两点的圆的方程; ⑶ 求经过A、B两点且面积最小的圆的方程。
(12分) 已知在抛物线上,的重心与此抛物线的焦点F重合。 ⑴ 写出该抛物线的标准方程和焦点F的坐标; ⑵ 求线段BC的中点M的坐标; ⑶ 求BC所在直线的方程。
(12分) 已知四棱锥,底面ABCD,其三视图如下,若M是PD的中点 ⑴ 求证:PB//平面MAC; ⑵ 求直线PC与平面MAC所成角的正弦值。
(12分)已知有两个不等的负根,无实数根,若p或q为真,p且q为假,求m的取值范围。
已知圆的方程为,过点作直线与圆交于、两点。 (1)若坐标原点O到直线AB的距离为,求直线AB的方程; (2)当△的面积最大时,求直线AB的斜率; (3)如图所示过点作两条直线与圆O分别交于R、S,若,且两角均为正角,试问直线RS的斜率是否为定值,并说明理由。