有一个装有进出水管的容器,单位时间内进水管与出水管的进出水量均一定,已知容器的容积为600升,图中线段OA与BC,分别表示单独打开一个进水管和单独打开一个出水管时,容器的存水量Q(升)随时间t变化的函数关系.(1)求线段BC所表示的Q与t之间的函数关系式,并写出自变量t的取值范围;(2)现已知容器内有水200升,先打开两个进水管和一个出水管一段时间,然后再关上一个进水管,直至把容器放满水,若总共用时不超过8分钟。请问,在这个过程中同时打开两个进水管和一个出水管的时间至少是多少分钟?
有一个可自由转动的转盘,被分成了三个大小相同的扇形,分别标有数字2,4,6;另有一个不透明的瓶子,装有分别标有数字1,3,5的三个完全相同的小球.小杰先转动一次转盘,停止后记下指针指向的数字(若指针指在分界线上则重转),小玉再从瓶子中随机取出一个小球,记下小球上的数字.
(1)请用列表或画树状图的方法(选其中一种)表示出所有可能出现的结果;
(2)若得到的两数字之和是3的倍数,则小杰贏;若得到的两数字之和是7的倍数,则小玉赢,此游戏公平吗?为什么?
某鞋店在一周内销售某款女鞋,尺码(单位: cm ) 数据收集如下:
24
23.5
21.5
24.5
23
22
22.5
25
绘制如图不完整的频数分布表及频数分布直方图:
尺码 / cm
划记
频数
21 . 5 ⩽ x < 22 . 5
3
22 . 5 ⩽ x < 23 . 5
23 . 5 ⩽ x < 24 . 5
13
24 . 5 ⩽ x < 25 . 5
2
(1)请补全频数分布表和频数分布直方图;
(2)若店主要进货,她最应该关注的是尺码的众数,上面数据的众数为 ;
(3)若店主下周对该款女鞋进货120双,尺码在 23 . 5 ⩽ x < 25 . 5 范围的鞋应购进约多少双?
如图, AC 是 ∠ BAE 的平分线,点 D 是线段 AC 上的一点, ∠ C = ∠ E , AB = AD .求证: BC = DE .
计算: 1 2021 - 8 3 + ( π - 3 . 14 ) 0 - ( - 1 5 ) - 1 .
在平面直角坐标系中,二次函数 y = 1 2 x 2 + bx + c 的图象与 x 轴交于 A ( - 2 , 0 ) , B ( 4 , 0 ) 两点,交 y 轴于点 C ,点 P 是第四象限内抛物线上的一个动点.
(1)求二次函数的解析式;
(2)如图甲,连接 AC , PA , PC ,若 S ΔPAC = 15 2 ,求点 P 的坐标;
(3)如图乙,过 A , B , P 三点作 ⊙ M ,过点 P 作 PE ⊥ x 轴,垂足为 D ,交 ⊙ M 于点 E .点 P 在运动过程中线段 DE 的长是否变化,若有变化,求出 DE 的取值范围;若不变,求 DE 的长.