已知数列满足:,其中为数列的前项和.(1)试求的通项公式;(2)若数列满足:,试求的前项和.
如图,三棱锥P-ABC中,PC平面ABC,PC=AC=2,AB=BC,D是PB上一点,且CD平面PAB(1)求证:AB平面PCB;(2)求异面直线AP与BC所成角的大小;(3)求二面角C-PA-B 的大小的余弦值。
,是方程的两根, 数列是公差为正的等差数列,数列的前项和为,且.(1)求数列,的通项公式;(2)记=,求数列的前项和.
已知都是正数,且成等比数列,求证:
在直角坐标系中,以O为极点,轴正半轴为极轴建立极坐标系,曲线C1的极坐标方程为,曲线的参数方程为,(为参数,)。(Ⅰ)求C1的直角坐标方程;(Ⅱ)当C1与C2有两个公共点时,求实数的取值范围。
已知C点在⊙O直径BE的延长线上,CA切⊙O于A 点,CD是∠ACB的平分线且交AE于点F,交AB于点D(1)求∠ADF的度数; (2)若AB=AC,求的值.