设,其中为正实数.(1)当时,求的极值点;(2)若为上的单调函数,求的取值范围.
如图,在四棱柱中,底面ABCD和侧面都是矩形,E是CD的中点,,.(1)求证:;(2)若平面与平面所成的锐二面角的大小为,求线段的长度.
由某种设备的使用年限(年)与所支出的维修费(万元)的数据资料算得如下结果,,,,.(1)求所支出的维修费y对使用年限x的线性回归方程;(2)①判断变量x与y之间是正相关还是负相关;②当使用年限为8年时,试估计支出的维修费是多少.(附:在线性回归方程中,),,其中,为样本平均值.)
将函数的图形向右平移个单位后得到的图像,已知的部分图像如图所示,该图像与y轴相交于点,与x轴相交于点P、Q,点M为最高点,且的面积为.(1)求函数的解析式;(2)在中,分别是角A,B,C的对边,,且,求面积的最大值.
设函数.(1)当时,求函数在区间内的最大值;(2)当时,方程有唯一实数解,求正数的值.
如图,椭圆的长轴长为,点、、为椭圆上的三个点,为椭圆的右端点,过中心,且,.(1)求椭圆的标准方程;(2)设、是椭圆上位于直线同侧的两个动点(异于、),且满足,试讨论直线与直线斜率之间的关系,并求证直线的斜率为定值.