如图,在四棱柱中,底面ABCD和侧面都是矩形,E是CD的中点,,.(1)求证:;(2)若平面与平面所成的锐二面角的大小为,求线段的长度.
已知函数(1)求的值域和最小正周期;(2)若对任意,使得恒成立,求实数的取值范围.
已知命题:函数为上单调减函数,实数满足不等式.命题:当,函数.若命题是命题的充分不必要条件,求实数的取值范围。
设函数 .(Ⅰ)求函数y=f(x)的最小值.(Ⅱ)若 恒成立,求实数a的取值范围.
已知圆C的极坐标方程为 ,直线l的参数方程为 (t为常数,t∈R)(Ⅰ)求直线l的普通方程和圆C的直角坐标方程;(Ⅱ)求直线l与圆C相交的弦长.
如图,D,E分别为△ABC的边AB,AC上的点,且不与△ABC的顶点重合,已知AE的长为m,AC的长为n,AD,AB关于x的方程 的两个根.(Ⅰ)证明:C、B、D、E四点共圆;(Ⅱ)若∠A=90°,且m=4,n=6,求C、B、D、E所在圆的半径.