如图,在平面直角坐标系xOy中,二次函数的图象与轴交于(-1,0)、(3,0)两点, 顶点为.(1) 求此二次函数解析式;(2) 点为点关于x轴的对称点,过点作直线:交BD于点E,过点作直线∥交直线于点.问:在四边形ABKD的内部是否存在点P,使得它到四边形ABKD四边的距离都相等,若存在,请求出点P的坐标;若不存在,请说明理由;(3) 在(2)的条件下,若、分别为直线和直线上的两个动点,连结、、,求和的最小值.
如图,已知抛物线()的顶点坐标为(4,),且与y轴交于点C(0,2),与x轴交于A、B两点(点A在点B的左边). (1)求抛物线的解析式及A、B两点的坐标; (2)在(1)中抛物线的对称轴l上是否存在一点P,使AP+CP的值最小,若存在,求AP+CP的最小值;若不存在,请说明理由; (3)在以AB为直径的⊙M中,CE与⊙M相切于点E,CE交x轴于点D,求直线CE的解析式.
如图,在△ABC中,AC=BC,AB是⊙C的切线,切点为D,直线AC交⊙C于点E、F,且CF=AC. (1)求∠ACB的度数; (2)若AC=8,求△ABF的面积.
如图,要在长32m,宽20m的长方形绿地上修建宽度相同的道路,六块绿地面积共570m,问道路宽应为多宽?
如图,在△ABC中,∠ABC=90°,D是边AC上的一点,连接BD,使∠A=2∠1,E是BC上的一点,以BE为直径的⊙O经过点D. (1)求证:AC是⊙O的切线; (2)若∠A=60°,⊙O的半径为2,求阴影部分的面积.(结果保留根号和π)
已知关于的一元二次方程. (1)求证:无论取什么实数值,这个方程总有两个不相等的实数根. (2)若这个方程的两个实数根、满足,求的值.