如图,矩形OABC的顶点A、C分别在x、y轴的正半轴上,点D为对角线OB的中点,点E(4,n)在边AB上,反比例函数(k≠0)在第一象限内的图象经过点D、E,且tan∠BOA=.(1)求边AB的长;(2)求反比例函数的解析式和n的值;(3)若反比例函数的图象与矩形的边BC交于点F,将矩形折叠,使点O与点F重合,折痕分别与x、y轴正半轴交于点H、G,求线段OG的长.
如图,在凸四边形 ABCD 中,已知 ∠ ABC + ∠ CDA = 300 ∘ , AB ⋅ CD = BC ⋅ AD .求证: AB ⋅ CD = AC ⋅ BD .
如图所示,点 E 是正方形 ABCD 的边 BC 延长线上一点,连接 DE ,过顶点 B 作 BF ⊥ DE ,垂足为 F , BF 交边 DC 于点 G .
(1)求证: GD ⋅ AB = DF ⋅ BG ;
(2)连接 CF ,求证: ∠ CFB = 45 ∘ .
如图抛物线 y = a x 2 + bx ( a > 0 ) 与双曲线 y = k x 有公共点 A , B ,已知点 A 的坐标为 1 , 4 ,点 B 在第三象限内,且 △ AOB 的面积为 3 ( O 为坐标原点).
(1)求实数 a , b , k 的值;
(2)过抛物线上点 A 作直线 AC / / x 轴,交拋物线于另一点 C ,求所有满足 △ EOC ∼ △ AOB 的点 E 的坐标.
如图,已知 A , B 两点的坐标分别为 A 0 , 2 3 , B 2 , 0 .直线 AB 与反比例函数 y = m x 的图象交于点 C 和点 D - 1 , a .
(1)求直线 AB 和反比例函数的解析式;
(2)求 ∠ ACO 的度数;
(3)将 △ OBC 绕点 O 逆时针方向旋转 α 角( α 为锐角),得到 △ O B ' C ' .当 α 为多少度时, O C ' ⊥ AB .并求此时线段 A B ' 的长.
如图,点 P 是双曲线 y = k 1 x k 1 < 0 , x < 0 上一动点,过点 P 作 x 轴, y 轴的垂线,分别交 x 轴, y 轴于 A , B 两点,交双曲线 y = k 2 x 0 < k 2 < k 1 于 E , F 两点.
(1)图①中,四边形 P E O F 的面积 S 1 为多少?(用含 k 1 , k 2 的式子表示.直接写出结论,不需过程)
(2)图②中,设 P 点坐标为 - 4 , 3 .
①判断 EF 与 AB 的位置关系,并证明你的结论;
②记 S 2 = S △ PEF - S △ OEF , S 2 是否有最小值?若有,求出其最小值;若没有,请说明理由.