如图是六个棱长为1的立方块组成一的一个几何体,画出它的三视图。
在梯形ABCD中,AB//CD,点E在线段DA上,直线CE与BA的延长线交于点G, (1)求证:△CDE∽△GAE; (2)当DE:EA=1:2时,过点E作EF//CD交BC于点F且 CD=4,EF=6,求AB的长
如图,已知△ABC,以AB为直径的⊙O经过BC的中点D,DE⊥AC于E。 (1)求证: DE是⊙O的切线; (2)若, DE="6," 求⊙O的直径。
如图,已知A(-4,m),B(2,-4)是一次函数y=kx+b的图象和反比例函数的图象的两个交点. (1)求反比例函数和一次函数的解析式; (2)求直线AB与轴的交点C的坐标及△AOB的面积; (3)当取何值时,反比例函数值大于一次函数值.
如图,抛物线与x轴交于A(1,0)、B(﹣3,0)两点,与y轴交于点C(0,3),设抛物线的顶点为D. (1)求该抛物线的解析式与顶点D的坐标. (2)试判断△BCD的形状,并说明理由. (3)探究坐标轴上是否存在点P,使得以P、A、C为顶点的三角形与△BCD相似?若存在,请直接写出点P的坐标;若不存在,请说明理由.
如图,反比例函数的图象与一次函数y=kx+b的图象相交于两点A(m,3)和B(﹣3,n). (1)求一次函数的表达式; (2)观察图象,直接写出使反比例函数值大于一次函数值的自变量x的取值范围.