某商场共五层,从五层下到四层有3个出口,从三层下到二层有4个出口,从二层下到一层有4个出口,从一层走出商场有6个出口。安全部门在每层安排了一名警员值班,负责该层的安保工作。假设每名警员到该层各出口处的时间相等,某罪犯在五楼犯案后,欲逃出商场,各警员同时接到指令,选择一个出口进行围堵。逃犯在每层选择出口是等可能的。已知他被三楼警员抓获的概率为。(Ⅰ)问四层下到三层有几个出口?(Ⅱ)天网恢恢,疏而不漏,犯罪嫌疑人最终落入法网。设抓到逃犯时,他已下了层楼,写出的分布列,并求。
设无穷等差数列{an}的前n项和为Sn. (1)若首项,公差,求满足的正整数k; (2)求所有的无穷等差数列{an},使得对于一切正整数k都有成立.
如果函数的最大值是4,最小值是-1,求实数a、b的值。
求函数在[0,2]上的最大值和最小值.
某公司生产的A型商品通过租赁柜台进入某商场销售.第一年,商场为吸引厂家,决定免收该年管理费,因此,该年A型商品定价为每件70元,年销售量为11.8万件.第二年,商场开始对该商品征收比率为p%的管理费(即销售100元要征收p元),于是该商品的定价上升为每件元,预计年销售量将减少p万件. (1)将第二年商场对该商品征收的管理费y(万元)表示成p的函数,并指出这个函数 的定义域; (2)要使第二年商场在此项经营中收取的管理费不少于14万元,则商场对该商品征收管理费的比率p%的范围是多少? (3)第二年,商场在所收管理费不少于14万元的前提下,要让厂家获得最大销售金额, 则p应为多少?
有一组数据的算术平均值为10,若去掉其中最大的一个,余下数据的算术平均值为9;若去掉其中最小的一个,余下数据 的算术平均值为11. (1)求出第一个数关于的表达式及第个数关于的表达式; (2)若都是正整数,试求第个数的最大值,并举出满足题目要求且取到最大值的一组数据.