某商场共五层,从五层下到四层有3个出口,从三层下到二层有4个出口,从二层下到一层有4个出口,从一层走出商场有6个出口。安全部门在每层安排了一名警员值班,负责该层的安保工作。假设每名警员到该层各出口处的时间相等,某罪犯在五楼犯案后,欲逃出商场,各警员同时接到指令,选择一个出口进行围堵。逃犯在每层选择出口是等可能的。已知他被三楼警员抓获的概率为。(Ⅰ)问四层下到三层有几个出口?(Ⅱ)天网恢恢,疏而不漏,犯罪嫌疑人最终落入法网。设抓到逃犯时,他已下了层楼,写出的分布列,并求。
已知定点和定直线,动点与定点的距离等于点到定直线的距离,记动点的轨迹为曲线. (1)求曲线的方程. (2)若以为圆心的圆与曲线交于、不同两点,且线段是此圆的直径时,求直线的方程.
在中,角所对的边分别为,已知, (1)求的大小; (2)若,求和的值.
命题:方程表示的曲线是焦点在y轴上的双曲线,命题:方程无实根,若∨为真,为真,求实数的取值范围.
已知数列的前n项和 (1)求数列的通项公式,并证明是等差数列; (2)若,求数列的前项和.
如图,梯形ABCD的底边AB在y轴上,原点O为AB的中点,M为CD的中点. (1)求点M的轨迹方程; (2)过M作AB的垂线,垂足为N,若存在正常数,使,且P点到A、B 的距离和为定值,求点P的轨迹E的方程; (3)过的直线与轨迹E交于P、Q两点,求面积的最大值.