(本小题满分14分)(1) 证明:当时,不等式成立;(2) 要使上述不等式成立,能否将条件“”适当放宽?若能,请放宽条件并简述理由;若不能,也请说明理由;(3)请你根据⑴、⑵的证明,试写出一个类似的更为一般的结论,且给予证明.
在三棱柱中,侧面为矩形,,,是的中点,与交于点,且平面.(1)证明:;(2)若,求直线与平面所成角的正弦值.
已知 (1)最小正周期及对称轴方程; (2)已知锐角的内角的对边分别为,且 ,,求边上的高的最大值.
在数列中,,且对任意的,成等比数列,其公比为.(1)若=2(),求;(2)若对任意的,,,成等差数列,其公差为,设.① 求证:成等差数列,并指出其公差;② 若=2,试求数列的前项的和.
已知函数(1)求函数在点处的切线方程;(2)求函数单调递增区间;(3)若存在,使得是自然对数的底数),求实数的取值范围.
已知椭圆E:过点D(1,),且右焦点为F(1,0),右顶点为A.过点F的弦为BC.直线BA,直线CA分别交直线l:x=m,(m>2)于P、Q两点. (1)求椭圆方程; (2)若FP⊥FQ,求m的值.