如图所示,BD,BE分别是∠ABC与它的邻补角∠ABP的平分线.AE⊥BE,AD⊥BD,E,D为垂足,求证:四边形AEBD是矩形.
已知:△ABC中,H为垂心(各边高线的交点),O为外心,且OM⊥BC于M. (1)求证:AH=2OM; (2)若∠BAC=60°,求证:AH=AO.(初二)
如图,△ABC是⊙O的内接三角形,AC=BC,D为⊙O中上一点,延长DA至点E,使CE=CD. (1)求证:AE=BD; (2)若AC⊥BC,求证:.
(1)计算; (2)已知,四边形ABCD顶点都在4×4正方形网格的格点上,如图所示,请用直尺和圆规画出四边形ABCD的外接圆,并标明圆心M的位置.这个圆中所对的圆心角的度数是.
已知,如图,AD为△ABC的内角平分线,且AD=AB,CM⊥AD于M.求证:AM=(AB+AC).
某校初三(1)班进行立定跳远训练,以下是李超和陈辉同学六次的训练成绩(单位:m) 李超:2.50,2.42,2.52,2.56,2.48,2.58 陈辉:2.54,2.48,2.50,2.48,2.54,2.52 (1)李超和陈辉的平均成绩分别是多少? (2)分别计算两人的六次成绩的方差,哪个人的成绩更稳定?为什么? (3)若预知参加级的比赛能跳过2.55米就可能得冠军,应选哪个同学参加?为什么?