为配合我市“创卫”工作,某中学选派部分学生到若干处公共场所参加义务劳动.若每处安排 10 人,则还剩 15 人;若每处安排 14 人,则有一处的人数不足 14 人,但不少于 10 人.求该学校所选派学生的人数和学生参加义务劳动的公共场所的个数.
如图,一次函数 y = kx + b 与反比例函数 y = a x 的图象在第一象限交于 A 、 B 两点, B 点的坐标为 ( 3 , 2 ) ,连接 OA 、 OB ,过 B 作 BD ⊥ y 轴,垂足为 D ,交 OA 于 C ,若 OC = CA .
(1)求一次函数和反比例函数的表达式;
(2)求 ΔAOB 的面积.
列方程解应用题:
某玩具厂生产一种玩具,按照控制固定成本降价促销的原则,使生产的玩具能够及时售出,据市场调查:每个玩具按480元销售时,每天可销售160个;若销售单价每降低1元,每天可多售出2个.已知每个玩具的固定成本为360元,问这种玩具的销售单价为多少元时,厂家每天可获利润20000元?
如图,某小区①号楼与⑪号楼隔河相望,李明家住在①号楼,他很想知道⑪号楼的高度,于是他做了一些测量,他先在 B 点测得 C 点的仰角为 60 ° ,然后到42米高的楼顶 A 处,测得 C 点的仰角为 30 ° ,请你帮助李明计算⑪号楼的高度 CD .
如图, E 是 ▱ ABCD 的边 AD 的中点,连接 CE 并延长交 BA 的延长线于 F ,若 CD = 6 ,求 BF 的长.
如图,直线 y = − 3 3 x + 3 分别与 x 轴、 y 轴交于 B 、 C 两点,点 A 在 x 轴上, ∠ ACB = 90 ° ,抛物线 y = a x 2 + bx + 3 经过 A , B 两点.
(1)求 A 、 B 两点的坐标;
(2)求抛物线的解析式;
(3)点 M 是直线 BC 上方抛物线上的一点,过点 M 作 MH ⊥ BC 于点 H ,作 MD / / y 轴交 BC 于点 D ,求 ΔDMH 周长的最大值.