今年3月5日,光明中学组织全体学生参加了“走出校门,服务社会”的活动,活动分为打扫街道、去敬老院服务和到社区文艺演出三项。从九年级参加活动的同学中抽取了部分同学对打扫街道、去敬老院服务和到社区文艺演出的人数进行了统计,并做了如下直方图和扇形统计图。请根据两个图形,回答以下问题:(1)抽取的部分同学的人数?(2)补全直方图的空缺部分.(3)若九年级有400名学生,估计该年级去敬老院的人数.
如图的⊙O中,AB为直径,OC⊥AB,弦CD与OB交于点F,过点D、A分别作⊙O的切线交于点G,并与AB延长线交于点E. (1)求证:∠1=∠2. (2)已知:OF:OB=1:3,⊙O的半径为3,求AG的长.
如图,在△ABC中,∠ABC=90°,D是边AC上的一点,连接BD,使∠A=2∠1,E是BC上的一点,以BE为直径的⊙O经过点D. (1)求证:AC是⊙O的切线; (2)若∠A=60°,⊙O的半径为2,求阴影部分的面积.(结果保留根号和π)
某养殖户每年的养殖成本包括固定成本和可变成本,其中固定成本每年均为4万元,可变成本逐年增长,已知该养殖户第1年的可变成本为2.6万元,设可变成本平均的每年增长的百分率为x. (1)用含x的代数式表示第3年的可变成本为万元. (2)如果该养殖户第3年的养殖成本为7.146万元,求可变成本平均每年增长的百分率
如图,在边长为1个单位长度的小正方形组成的网格中,给出了格点△ABC(顶点是网格线的交点). (1)将△ABC绕着点B逆时针旋转90°,得到△A1BC1,请画出△A1BC1;求点A旋转过程中所经过的路径长。 (2)请画一个格点△A2B2C2,使△A2B2C2∽△ABC,且相似比不为1.
某公司欲招聘业务员一名,现对A、B、C三名候选人分别进行笔试、面试测试,成绩如下表:
(1)如果按照三人测试成绩的平均成绩录取人选,那么谁将被录用? (2)根据实际需要,公司想将丙录用,请兼顾笔试、面试两个方面,你确定的方案是什么?写出理由.