如图,已知AB为圆O的直径,BC切圆O于点B,AC交圆O于点P,E为线段BC的中点.求证:OP⊥PE.
设x,y均为正数,且x>y,求证:2x+≥2y+3.
设函数。 (1)当时,求函数的最小值; (2)当时,试判断函数的单调性,并证明。
在中,角、、的对边分别为、、,且。 (1)求的值; (2)若,且,求和的值
设二次函数在区间上的最大值、最小值分别是M、m,集合. (1)若,且,求M和m的值; (2)若,且,记,求的最小值.
(本小题满分16分) 如图,已知底角为60°的等腰梯形ABCD,底边BC长为7cm,腰长为4cm,当一条垂直于底边BC(垂足为F)的直线l从左至右移动(与梯形ABCD有公共点)时,直线l把梯形分成两部分,令BF=x,试写出直线l左边部分的面积y与x的函数关系式.
已知:函数(a、b、c是常数)是奇函数,且满足. (1)求a、b、c的值; (2)试判断函数f(x)在区间(0,)上的单调性并证明.