(本题满分14分) 若F1、F2为双曲线的左、右焦点,O为坐标原点,P在双曲线左支上,M在右准线上,且满足(Ⅰ)求此双曲线的离心率;(Ⅱ)若此双曲线过点,求双曲线方程;(Ⅲ)设(Ⅱ)中双曲线的虚轴端点为B1,B2(B1在y轴正半轴上),求B2作直线AB与双曲线交于A、B两点,求时,直线AB的方程.
已知向量,,且,其中是△ABC的内角,分别是角的对边. (1) 求角的大小; (2) 求的取值范围.
(本小题满分14分) 已知等比数列的前项和为 (Ⅰ)求数列的通项公式; (Ⅱ)设数列满足,为数列的前项和,试比较与的大小,并证明你的结论.
(本小题满分12分) 已知均在椭圆上,直线、分别过椭圆的左右焦点、,当时,有. (I)求椭圆的方程; (II)设P是椭圆上的任一点,为圆的任一条直径,求的最大值.
(本小题满分12分) 在四棱锥中,平面,底面为矩形,. (I)当时,求证:; (II)若边上有且只有一个点,使得,求此时二面角的余弦值.
(本小题满分12分) 在中,分别是的对边长,已知. (I)若,求实数的值; (II)若,求面积的最大值.