以圆锥曲线的焦点弦AB为直径作圆,与相应准线有两个不同的交点,求证:①这圆锥曲线一定是双曲线;②对于同一双曲线, 截得圆弧的度数为定值.
若一个动点P(x,y)到两个定点A(-1,0)、B(1,0)的距离差的绝对值为定值2a,求点P的轨迹方程,并说明轨迹的形状.
给定两个命题,p:对任意实数x都有ax2+ax+1>0恒成立;q:关于x的方程x2-x+a=0有实数根。如果p∨q为真命题,p∧q为假命题,求实数a的取值范围
在圆上任取一点,过点作轴的垂线段,为垂足,当点在圆上运动时,线段的中点的轨迹为曲线 (Ⅰ)求曲线的方程; (Ⅱ)过点的直线与曲线相交于不同的两点, 点在线段的垂直平分线上,且,求的值
设数列的前项n和为,若对于任意的正整数n都有. (1)设,求证:数列是等比数列,并求出的通项公式。 (2)求数列的前n项和.
如图所示,直三棱柱ABC—A1B1C1中,CA=CB=1, ∠BCA=90°,棱AA1=2,M、N分别是A1B1、A1A的中点. (1)求的长; (2)求cos<>的值; (3)求证:A1B⊥C1M.