某商场为吸引顾客消费推出一项优惠活动,活动规则如下:消费额每满100元可转动如图所示的转盘一次,并获得相应金额的返券,假定指针等可能地停在任一位置. 若指针停在区域返券60元;停在区域返券30元;停在区域不返券. 例如:消费218元,可转动转盘2次,所获得的返券金额是两次金额之和.(1)若某位顾客消费128元,求返券金额不低于30元的概率;(2)若某位顾客恰好消费280元,并按规则参与了活动,他获得返券的金额记为(元),求随机变量的分布列和数学期望.
如图,、、是圆上三点,是的角平分线,交圆于,过作圆的切线交的 延长线于.(Ⅰ)求证:;(Ⅱ)求证:.
已知函数,其中e为自然对数的底数,且当x>0时恒成立.(Ⅰ)求的单调区间;(Ⅱ)求实数a的所有可能取值的集合;(Ⅲ)求证:.
已知椭圆C长轴的两个顶点为A(-2,0),B(2,0),且其离心率为.(Ⅰ)求椭圆C的标准方程;(Ⅱ)若N是直线x=2上不同于点B的任意一点,直线AN与椭圆C交于点Q,设直线QB与以NB为直径的圆的一个交点为M(异于点B),求证:直线NM经过定点.
某市为准备参加省中学生运动会,对本市甲、乙两个田径队的所有跳高运动员进行了测试,用茎叶图表示出甲、乙两队运动员本次测试的跳高成绩(单位:cm,且均为整数),同时对全体运动员的成绩绘制了频率分布直方图.跳高成绩在185cm以上(包括185cm)定义为“优秀”,由于某些原因,茎叶图中乙队的部分数据丢失,但已知所有运动员中成绩在190cm以上(包括190cm)的只有两个人,且均在甲队. (Ⅰ)求甲、乙两队运动员的总人数a及乙队中成绩在[160,170)(单位:cm)内的运动员人数b;(Ⅱ)在甲、乙两队全体成绩为“优秀”的运动员的跳高成绩的平均数和方差;(Ⅲ)在甲、乙两队中所有的成绩为“优秀”的运动员中随机选取2人参加省中学生运动会正式比赛,求所选取两名运动员均来自甲队的概率.
如图,在直三棱柱ABC—A1B1C1,AB=AC=1,∠BAC=90°,连结A1B与∠A1BC=60°.(Ⅰ)求证:AC⊥A1B;(Ⅱ)设D是BB1的中点,求三棱锥D-A1BC1的体积.